Tag: Attention

2 Posts

BoTNet (Bottleneck Transformers)
BoTNet (2021-01): 将 Self-Attention 嵌入 ResNet 文章:Bottleneck Transformers for Visual Recognition 论文: https://arxiv.org/abs/2101.11605 摘要: We present BoTNet, a conceptually simple yet powerful backbone architecture that incorporates self-attention for multiple computer vision tasks including image classification, object detection and instance segmentation. By just replacing the spatial convolutions with global self-attention in the final three bottleneck blocks of a ResNet and no other changes, our approach improves upon the baselines significantly on instance segmentation and object detection while also reducing the parameters, with minimal overhead in latency. Through the design of BoTNet, we also point out how ResNet bottleneck blocks with self-attention can be viewed as Transformer blocks. Without any bells and whistles, BoTNet achieves 44.4% Mask AP and 49.7% Box AP on the COCO Instance Segmentation benchmark using the Mask R-CNN framework; surpassing the previous best published single model and single scale results of ResNeSt evaluated on the COCO validation set. Finally, we present a simple adaptation of the BoTNet design for image classification, resulting in models that achieve a strong performance of 84.7% top-1 accuracy…
DANet: Dual Attention Network for Scene Segmentatio
Abstract The paper introduces a position attention module and a channel attention module to capture global dependencies in the spatial and channel dimensions respectively. The proposed DANet adaptively integrates local semantic features using the self-attention mechanism. 摘要 本文引入了位置关注模块和通道关注模块,分别在空间和通道维度上捕捉全局依赖性。 所提出的DANet利用自注意力机制自适应地集成局部语义特征。 Outline Brief Review: attention mechanism, SE net DANet: Dual Attention Network Experiments: visualization and comparison Conclusion 大纲 回顾:注意机制、SENet DANet: 双重关注网络 实验:可视化和对比 结论 Download: https://connectpolyu-my.sharepoint.com/:p:/g/personal/18048204r_connect_polyu_hk/EbgphNjvYP5Psw5gdgDjInQBs761z4x8FYboKXF2arT6kw?e=haTOHI This is an embedded Microsoft Office presentation, powered by Office.